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Abstract

Reliable derivatives of digital images have always been hard to obtain, especially (but

not only) at high orders. We present new filters that give more accurate derivatives than

the traditional Gaussian ones. We show that the traditional filters give incorrect derivatives

even for an analytic. noiseless, infinite image, because they smooth the image too much. For

a finite interval, the effects of truncating the filter become intolerable for high derivatives.
Ve derive filters that allow a higher amount of noise suppression with less compromise of

accuracy than the Gaussian. The filters are easy to compute at arbitrary size. In addition.

a general analytic (non-filter) solution is derived for the regularization problem on a finite
interval.
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1. Introduction

Finding derivatives in an image has always been a desirable goal in computer vision because

it is often the local changes in the scene that characterize the shape, for instance its

curvature, which is seen as a change in shading or in other image characteristics. Curvature

itself involves second derivatives, and finding maxima of curvature requires third ones. In

some applications, for instance in finding affine and projective invariants of shapes [Weiss.

1988, 1991], even higher derivatives are required. Thus, having reliable derivatives makes

it possible to apply the vast body of knowledge that exists about differential mathematical

methods.

The usual methods for finding derivatives have been very unreliable, with the problems

growing unacceptably worse with higher derivatives. This has severly limited the usefuliess

of most methods in vision that rely on derivatives for their application. A tendency has

developed in the field to avoid the problem altogether and try to find alternative methods.

but the need for derivatives has not simply gone away. Particularly for smooth shapes

without sharp edges. there is no good substitute for differential methods. We are not

dealing here with discontinuities. Rather, we are interested in higher derivatives of smooth

shapes. However. our method can pinpoint the location of zero crossings in a smoothed

image with accuracy, whereas a simple Gaussian smoothing tends to dislocate them. This

can be important in recognizing shapes with scale space methods.

In this paper we analyze the sources of errors in common methods for differentiation

and show how to correct them. We start with some basic requirements that we would like

differentiation operators to satisfy and show how to build them while avoiding the usual

problems. Two basic, and conflicting, requirements are involved: a) Accuracy: At least

for smooth, noiseless image, one would like to obtain the correct derivatives, at least at

low orders. b) Smoothing, to alleviate the effect of noise and discretization. Generally.

smoothing reduces the accuracy even in the analytic case as the more rapid changes in

the function are smoothed out. The goal in designing a derivative filter is then to strike

the correct balance between accuracy and smoothing. In this paper we develop filters that
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yield correct low order derivatives (up to a desired order), while the higher derivatives

are reduced ir, a controlled way by the smoothing parameter. This combats noise because

noise changes considerably from pixel to pixel and thus contributes mainly to the high order

variations, while it tends to average out in the larger scale, so it does not add much to the

slower variations in the image. The method is based on a modification of the regularization

method combined with a spline approximation. The results are rather simple closed-form

expressions for the filters.

Most existing methods are based on smoothing the shape with a Gaussian filter and

then taking the derivatives of the smoothed image. This is equivalent to filtering with

a derivative of the Gaussian. We show that this method gives the wrong results even

for the low order derivativ. of a simple analytic polynomial. The smoothing effect is too

strong relative to the accuracy needed for most applications. In addition, truncating the

Gaussian at finite boundaries usually adds avoidable errors, which are quite benign for

smoothing but can be particularly damaging for high derivatives and lead to meaningless

results even in noiseless images. This is because truncation is equivalent to introducing a

sharp discontinuity in the data which makes the higher derivatives meaningless. It turns

out that this problem can be solved simply by replacing the derivative of the Gaussian (or

other smoothing function) by the central difference of the same order. This amounts to a

spline approximation of the same order. A more complicated approach based on a general

analytic solution of the regularization equation is also presented.

Other methods that have been used can be divided into several classes: 1) Methods

that produce small but easy to calculate filters (Hueckel, [1973], Dierckx, [1977], Hummel.

[1979], Haralick, [1984]. Besl, [1988]). They are usually quite ad hoc and the results are

not very reliable. 2) Methods based on global regularization, that assign an unknown

variable to each pixel and solve a large system of equations for the whole set of pixels in

the image (Grimson, [1981], Horn. [1983], Poggio, [1987], Kass, Witkin, and Terzopoulos.

[1987], Blake and Zisserman. [1987], Poggio et al. [198S]. These methods, being based

on sound principles, are rather robust but they are computationally intensive, and the
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accuracy of their derivatives has not been investigated, 3) Method occupying the middle

ground between the two extremes. Meer and Weiss [1989] used polynomial-based filters

that smooth the image over a given size window which is moved over the image. The least

squares distance is found between the image and a finite series of orthogonal polynomials;

the degree of smoothing is determined by the highest order of polynomial used. Similar

filters were discussed by [Hashimoto and Sklansky, 1987]. While these filters work well in

man - :xses, the high derivative filters tend to concentrate in the center of the window.

reducing the smoothing. Weiss [1989] introduced a regularization based method, again

for use in moving finite windows. While the amount of calculation needed is orders of

magnitude less than in traditional regularization, it is still more complicated than one

would like. The present method is based on a continuous approximation so it is much

easier to derive the filters. One can choose the window size and the smoothing parameter

and then easily calculate the differentiation filter.

In the next section a general criterion for differentiation filters will be developed, in

subsequent sections we will then derive smoothing filters for a finite window, deal with

differentiation, and show experimental results.

2. Smoothing Versus Accuracy

In this section we analyze the balance between smoothing and accuracy for a general filter.

and derive a general "accuracy criterion" that a good filter should satisfy.

As an illustration we first show that the Gaussian gives the wrong result even for the

simplest functions. Smoothing over x2 gives

g(x, 0)1,X2 =X2 + 2

where g(x. a) is the Gaussian, and 0 denotes a convolution. Smoothing x3 gives

g(x.)r 3 = x + 3a2x

We can see that an error is introduced that increases as we increase the smoothing, i.e.

higher 7. Similar results are obtained for higher powers or for taking rbrivatives. For
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effective smoothing a should not be too small so this error can be substantial. This is

a systematic, "oversmoothing error", one in the larger scale, as opposed the small scale

random noise that we want to smooth. As noted before, we do not expect a smoothing

operator to give accurate results but we do want to improve the balance between accuracy

and smoothing so that at least the leading terms in a Taylor expansion will not produce

errors.

We will now discuss this noise versus signal problem in terms of the ratio between

the smoothing parameter a, and a "natural" scale of the shape, so. For a smooth shape

f(x), we estimate this so as the scale over which the relative change in the shape. .f/f.

is of order of magnitude of 1. We than rescale the x axis so that xi = x/so. and rewrite

the shape as f(xl). For example, if f(x) = sin(x/so) thaji f(xl) = sin(xl). This makes

the derivatives of f with respect to x, of the order of magnitude of 1. In this way we

"normalize" the signal in the x direction and deal with its scale separately.

Intuitively speaking, when smoothing the image of this shape, we would like to main-

tain the accuracy of changes on scale so and longer scales, but smooth the smaller features

in the image. This is because the shape is assumed to be smooth on the shorter scales and

any changes there is probably noise. In the following we will quantify this concept.

2.1 Accuracy Criterion. A natural tool in dealing with derivative in some neigh-

borhood of a smooth shape is the Taylor expansion

fr) =f(A-) = ( X
V

We will look at the result of Gaussian filtering at x = 0. It is easy to show that the error

introduced by this smoothing is

go f _ f Pf( _--), + f -- +..+
SO S SO

with the derivatives f lO(l). If we want accurate results, we have to keepSd(x/so)O

this error small. Looking at the leading term, we see that the accuracy is proportional to
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a 2 /S2, so we ha-e t, keep a small, i.e. a << .0. Unfortunately, this limits the ability of

the filter to smooth out the noise.

For derivatives we similarly have (with g(k) 0 f = g 0 f(k))

g(k) , f _ ;(k) L k+2)( )2+ 1 4 4-+~

Again the error resulting from the leading term is proportional to a2 /s 2 . (For the relative

error we can divide this by the true derivative, f(k) = f(k)/s1k.)

A way to improve the situation is to eliminate the leading terms in the expansions of

the errors above. If the first term is eliminated, for instance, than the error will be reduced

to - - This way we obtain a much better accuracy for the same smoothing param-

eter a as before, or alternatively, we can increase the smoothing without compromising

accuracy.

To generalize this example, we want a filter Fj that will preserve the powers xn"

D =x ,  n=O...

(For the Gaussian I = 1.) These conditions can be expressed more simply in terms of of

the filter's "normalized moments" m,:

Mn= Jt)F(x)dx

where a is now a measure of the filter size, e.g. the variance, Using the binomial expansion

we have

F1 D x" = J F1(x - -)( + - )zd+
Fi X- ,(X g X )nd

=/FI(, -x)[( x) n) + n( - x)'-l" + ... + x"]d( - x

T m,, +7n  
-177,--1 n-i X + ... + lnl0 X

We see that the preservation of powers x" by the convolution is equivalent to the conditions

on the moments:

n0=l m11=0, n=1...l
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The error in the smoothing of f(k) at x = 0 can now be written as

F, ® f(k) f (k) m,+I (l+k+1( '7_)1+1 +..(+ O)!

Thus, increasing the order I of the filter eliminate the powers (- )' up to n = I and improveSO

the accuracy to the above tolerance.

The error expression above gives us an "accuracy criterion" for choosing appropriate

parameters. We need its leading term to be small, and since f(') ; 0(1) we obtain the

condition
m +i ()! «<1 (1)

(11)! S( 0,

This criterion can be used to estimate the parameters in several ways. Given the meaningful

scale of change of the signal, so, and the smoothing parameter a, we can calculate the order

I of the filter that will lower the oversmoothirig error to some acceptable level, a can be

determined from the estimated noise, as discussed below. Conversely, for a given order

1, we can calculate the largest smoothing parameter or that will still maintain a desired

accuracy. Generally speaking, at low orders we need a < So, but at high orders we can

afford to have the smoothing a bigger than so because the factor ml+,/(l + 1)! in (1) is

small.

One way of obtaining such x'-preserving filters is by multiplying a Gaussian with

appropriate polynomials. The filter of order 1, eliminating errors up order 1, is then (on an

infinite interval)
I

F1 = aiP, (x)g(x)
z= 0

where P,(x) are Hermite polynomials which are orthogonal with respect to the Gaussian

weight function. The coefficients a, are chosen so that the first I powers x" are preserved

by the filter. Discrete versions of this method on a finite window are described in detail in

[Meer and Weiss, 1989]. A different way to achieve this goal is described here. which has

advantages with respect to handling noise.
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2.2 Noise Suppression. Maintaining accuracy is only one side of the balance we

are interested in. The other side is suppressing noise. We call noise any random variation

including "bumps" in the shape, discretization noise, etc. The noise is not polynomial and

can better be described by a Fourier representation, N(w). The derivative of this noise

contributes the the error in finding derivative of the shape. After smoothing the shape by

the filter F the noise derivative in the Fourier domain is

N(k)(o3) = .Ukpj(OL)N(w3)

with F being the Fourier transform of F. We can write this error in terms of scale of

change s:
1

For the signal to noise ratio of the derivative we can divide this error by the derivative

itself, f(k) = f(k) /sk, to obtain

N(k) 1sO . a

f(k) s s s

Since we assume that the noise N vanishes above the scale s > so, (i.e. any change above

this scale is part of the signal), we want the filter to do no smoothing there. However. for

s < so we see that this error is proportional PFsk and smoothing becomes critical. Without

smoothing (F = 1), it will tend to infinity as the size of the bumps s tends to zero. (This

can also be seen by direct differentiation of N). The effectiveness of the smoothing is thus

determined by the factor Fj(o/s), so we need a filter that decays rapidly in the Fourier

domain as a function of a/s. This implies a requirement for large a. Generally speaking.

a filter will smooth noise bumps whose size and height are small compared with aT. We

thus want a to be large enough to make the noise to signal ratio above small, but not large

enough to violate the accuracy criterion (1). This criterion shows that we can increase the

smoothing parameter with little compromise of accuracy by using higher order filters.

For the Gaussian. this smoothing factor is c, 2 /S 2 so it will suppress any derivative of

the noise with scale smaller than a. However, it also suppresses the changes on the larger
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scales .s > so which are not noise, and this is another expression of the oversmoothing

problem discussed above. (In terms of the previous analysis, the accuracy criterion will be

met only with a very small a). We need a filter that will not affect the changes on scale

s > so but will suppress the changes on scales s < So. In this paper we will derive filters.

based on regularization theory, which meet these requirements.

The regularization filter for the infinite line is a Butterworth-like filter: (Sec. 3)

- 1 1F1=1 + (or/s)+ 1

(with I being the order of the filter). This is in fact a good low pass filter (Fig. 3). preserving

the slow changes and suppressing the faster changes in derivatives tip to order I. Here we

will modify this filter for a finite interval. This is important for finding derivatives. which

are of a local nature. In the case of the Hermite and other polynomial filters. F1 start to

decay at a certain point but then they oscillate for a long interval, so they can have niore

difficulty dealing with smoothing noisy derivatives.

In summary, we have seen some sources of errors in differentiation, and found the

requirements that a good filter has to meet. Using both Taylor expansion analysis and

Fourier analysis we have concluded: (i) the Gaussian filter oversmooths the signal. (ii)

othc, filters can be derived which do not have this problem. and (iii) an appropriate choice

of the parameters of these filters is the key to obtaining a good signal to noise ratio in

the derivatives. Some general guidelines were found (the accuracy criterion (1)) for this

choice, with the details depending on the specific filter.

The above conclusions are valid for both finite and infinite intervals. However. the

finite case can add other serious errors that we deal with later.
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3. Regularized Differentiation on the Infinite Line

As an introduction to our method we treat here an infinite interval. The next section

treats the finite interval case. more suitable for derivatives. In the previous section we.

described the need to improve the balance between smoothing and accuracy provid(ed by

the Gaussian. A method that allows us to adjust this balance to fit our needs i., tie

regularization method. It basically consists of minimizing a cost function that conrtains

both an accuracy term and a smoothing term. The cost functional can be written as

J((f(.r ) - ( r f )2 )dX

where p(x) is the image data and f (x is the smoothed shape. The first term is a measlre

of the square distance of the smoothed shape from the data. while the second represents

the variation, or unsinoothness. of the shape. The parameter A determines the )alance

between smoothing aiid accuracy. In the continuous case. it is possible to minimize this

function by using the Euler-Lagrange equation of the calculus of variations, which leads

to the following differential equation for the shape f

f(x) + \f" (x) = 1(x)

This (,,,aton can bc s,'Aved instantly fcr t1., ;inple d(ta finctions P = x" , n < 4. In

this case f = p (because the fourth derivative vanishes). That is. the smoothed shape

in equal to the data image in this case, unlike the results of Gaussian smoothing that we

saw earlier. Thus. with a similar degree of smoothing, the regularization method pro(luces

more accurate values of the first powers .r" than the Gaussian.

The next step is to produce a general purpose filter based on the above method. so

that we will not have to solve a fourth-order differential equation for every iinage. To (1()

this we use the Green function method of differential equations. We solve for a "needle"-

like imagec. i.e. a delta function d( i - .' '.vheie : is ally given point in the iia,,e. The

solution is our Green function. Because of the linearity of the problem, a general solution

can be built from such basis solutions.



III a physical analogy, our cost function represents a flexible *snake with the smiooth-

Sparameter corresp)onding to the stiffness of the material. The snake c-an be made iii)

of a combination of --basis" snakes. Each basis snake is a smooth version of o!'v dlata point.

or a "needle" image. Since the the problemn is linear, a combination of such snakes will

gi1ve the appIrop~riate smlooth shape.

%lore formally. dlenoting the Green function by G, we wvant it to solve

G ) I(.r - ) + A G' ~ x-~ 3

The solution for general data is now

f (x1) fG(x - cp)(1 4

The above solution is in fact a convolution of the image data p with a filter. the Green

function G.

The simplest way to find this Green function is via a Fourier transform. Transforming

both sidles of eq. (3) we have. with G(-,;) being the transformn of G( x

from wvhich G; ..:)i

Transforming back to the coordinate (loinaill we have to perform the integral

1 f~ :) ,t.'
G(x) = - - -L

The deivives Crl(xU) CanI be found dlirect lv or from

Ox 2- 1 A,; I
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The above integrations canl be pcrformned using the residiue method of anialvtic funct ionS.

As ex~c dfrom the thieory of differential equat ions, the result is a function with il

(liscoti tillity a.ft x = 0:

G~n)(xfor x' > 0{ "G""aj( -xr) for ra<'

For n = 0. the sino()tlling filter, .- hav Gc( x) =G+( (a' with

G-=G(()'x -'"Sn(7 4+ cos(.rjIoT
2o-

where

We will also need thle integral of G:

Gt (i) (X) =j G(a'} l "~ca'/

The smoothing filter G is plotted in Fig. 1 along with a Gaussian with the same

,7 The first derivative filter G' is plotted in Fig. 2 with the derivative of the Gaussian.

Figs. 3.4 compare tile Fourier transforms of the smoothing and differentiation filters.

respectively. W\e can see from the transform of the smoothing filter G that it acts like

at low-pass filter, with the low frequency response being almost fiat. meaning that the

slower. litr-er-scale variations in the data are preserved much better than they are by the

Gaussian. Smoothing- begins only above a certain frequency. depending on the sirootlingl!

Iparainleter. andl increases for higher frequencies. This is in lire wvith the earlier observationl

ab~out the preservation (if the low or(ier Taylor terms andI with our initial redluiremlent,, soii

at differentiation operator.

It can be verified that the plowers x'". n < 4 are indeed eigeivaliies of the convoluition

with this filter:

G x6 X J G(x - c),"dI :- x", ii = 0. 1.2. 3 1 3)



in line with our earlier observation about the preservation of powers xn .

The same method can be carried to higher orders, so that eq. (5) will hold for higher

powers n. As discussed in Section 2. a method that will preserve higher powers of x will

allow using a stronger smoothing factor a. To obtain that, we replace f" in the cost

function by f (k). This results in the following G,.:

Gk(X) 1 elX

where 1 = 2k - 1 is the order of the filter, which will preserve powers up to x1.

The filter with k = 3 (or I = 5) is, with a = A.

1

G 3 ,+ = -e-x/V"( sin( v3x/) + cos(V3x/a)) + e- 2x/,]

3a

and for ,. = 4, (or I = 7) with

ci= (2+ 2)/2, = V(2- V'2)/2

11

we na= G --+[e- X/'(c2 cos(clx/la) + c1 sincix/a))
4o,

+e -cI/"(ci cos(c 2 x/4 ) + c2 sin(cr/o))]

The infinite k = 2 case was also derived by [Poggio et al., 1985] without noting the

connection with preservation of powers. Here we shall deal with high order derivatives of

a smooth shape in a finite neighborhood, and this is developed next.

4. The Finite Window Case: Preserving Powers

In practice one wants to use a finite size window, i.e. convolve the image with a finite filter

not only because of physical limitations but because one does not want to smooth over

discontinuities. so the size of the filter has to be smaller than the size of the smooth parts

of the shape. Derivatives, in particular, are local phenomena and call for a local filter.

One is tempted to simply truncate an infinite filter at some finite point. but this is

inappropriate for two reasons: (i) truncation amounts to introducing a discontinuity in the
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function with disastrous effects on higher derivatives. This will be dealt with later. (ii)

the property of preservation of powers takes a different form on a finite interval and the

Green function has to be modified. This will be done now.

To maintain the accuracy of the filter we have to maintain the property that the filter

will preserve the lower powers x" on a finite interval, and for that we have to deal in more

detail with the Green function method. This property will translate into linear conditions

on the parameters of the Green function.

A general solution of a linear differential equation like (3) has two kinds of solutions:

a homogeneous solution, which solves the left hand side (homogeneous) part of it alone

(with zero r.h.s.). and an inhomogeneous part. that makes the left hand side equal to the

right hand side. For our 4-th order equation one can express this as

4

G(x) G.(x - f)l +Z bi( )H(x - xo) (6)G~z=,

G._ is the solution in the infinite case found before and it provides the 6 function at x =

(i.e. our -needle" is at ),

(1 + AD 4 )G(x - =6(x -

This is our inhomogeneous solution. The homogeneous solutions b1H, (with bi being ar-

bitrary coefficients and H, some basis homogeneous solutions) only solve the 1.h.s. The

origin x0 can be chosen arbitrarily, and without loss of generality it can be chosen as

zero. but here we will need another choice. The general solution is thus not unique and is

determined by boundary conditions.

The infinite case was special in the sense that the homogeneous solution need not be

considered. because the boundary conditions require that the solution and its derivatives

vanish at infinity and only a trivial (zero) homogeneous solution has this property. Thus.

G, in that case is a unique solution of eq. (3) and G, :;Ip is the unique solution for general

data p(x). So. with the data p(x) = x' (n < 4). the unique solution is f(x) = x"t and it

is give by this convolution. In the finite boundary case, there are many possible solutions

13



and the one given by G- 0 p is x 4 "contaminated" by the addition of some homogeneous

solution.

Our goal is now to find the coefficients b, in the homogeneous solution in (6) that will

restore the desirable properties we had in the infinite case, namely the preservation of x ,

G G xn = x n .

To simplify the treatment, we assume now that it is enough to find the Green function

on a small window rather than for the whole image. This window can than be moved across

the image to find the whole solution. The justification is that the data outside the window

does not influence the smoothed shape inside very much. We form the window such that

its center is located at the "'needle" position and it extends to a width w around this

center. This can be done by setting x0 = in eq. (6), and setting the window boundaries

at ± w. Since the windows are all similar the coefficients bi are now constants and eq.

(6) becomes shift-invariant:

4

G(x ) = G.(x - ) + E biHi(x - 0Gs=1

The general solution of (2) is now the linear combination of windows:

f(x) = I G(x - f)p( )d

Since eq. (2) is a fourth order equation we have four independent bound, conditions

that we can impose. in line with our previous conditions on the moments we c." choose

w
G(x) = (7a)

w1

- G(x)x= 0 n =1,2,3 (7b)

It is easy to show that. with the shift invariance approximation above, these conditions

lead to the the preservation of powers on a finite window, in analogy with the infinite case.
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We will only show it for n = 3. We have (dropping the subscript from f):

G x3  (x - )d= G(x - d
-W J J D,

= G( - x)[( - x)) 3 + 3( - x)2x + 3( - x)x2 + x 3]d( - x)

tv

X3

The last equality follows from the results for n < 3.

In practice, it appears that one can squeeze one more condition out of the system.

Instead of normalizing the filter (condition (7a)) by adding the homogeneous solutions, the

normalization can then be done directly, with a multiplying constant 1/N. It amounts to

finding the smoothed version of an image which is multiplied by the constant N. rather

than the image itself. In fact, this kind of normalization can be done for other filters. such

as a truncated Gaussian, as well. Eq. (7a) can now be replaced by some other condition.

We can demand, for example, that the filter vanish at the ends of the window. The filter is

of course zero outside the window, so this will provide continuity. Another possibility (not

tried) is demanding the conservation of the x 4 moment, which will immediately preserve

the x 5 moment too, because of its antisymmetry.

The boundary condition (7) give rise to linear equations for bi which we will now solve.

During this treatment we can replace (x - )/o' by x and the half-width of the window w

is replaced by a normalized width a:
W

We will obtain a simple linear system of two equations that need to be solved for a given

a. The four independent homogeneous solutions can be written as

e ± cos(x), e+ X sin(x)

Condition (7b) with n = 1, n = 3 can be met immediately by choosing the two symmetric

combinations

H,(x) = cosh(x)cos(x). H2 (x) = sinh(x)sin(x)

15



The Green function can now be written as

G(x) = (G.(x) + biH,(x) + b2 H 2 (x))/N (8)

with bl, b2 , N to be found by the remaining conditions. From condition (7b) with n = 2

we find by integration by parts

x2 G(x) = a2G(-1)(a) - 2aG(-2)(a) + 2G'-')(a) = 0

The negative superscripts mean integration rather than a derivative. Since it is easier to

work with derivatives we will use

G(n) = -4G ( n - 4 )

(which is the property that solves (3)) to obtain

G'(a) - aG"(a) + a2G..(a)/2 = 0

Interestingly, this is a Taylor expansion of G'(x) around the point x = a, evaluated at

x = 0. and it is equal to the exact value G'(0, a) = 0. It is not clear if this fact is of

importance. Substituting (8) in the above we have

G2,(a) - aG (a) + a 2 G(a)/2

+bl(H'(a) - aH','(a) + a2 H'1"(a)/2) (10a)

+b2(H'(a) - aH'(a) + a 2H .(a)/2) = 0

Together with the condition of vanishing at the end

G.(a) + b1H,(a) + b2 H 2 (a) = 0 (lob)

we have a system of two linear equations for bl, b2 . All other quantities appearing in it

are easily calculated so it can be solved. We collect the coefficients used in eq. (10a) for
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reference:

G',(a) = -e-' sin(a)

G"(a) = e-a(sin(a) - cos(a))

G. (a) = 2e - a cos(a)

H'(a) = sinh(a) cos(a) - cosh(a) sin(a)

H2(a) = sinh(a) cos(a) + cosh(a) sin(a)

H,'(a) = -2 sinh(a) sin(a)

H"(a) = 2 cosh(a) cos(a)

H'" (a) = -2 sinh(a) cos(a) - 2 cosh(a) sin(a)

H2"(a) = 2 sinh(a) cos(a) - 2 cosh(a) sin(a)

All that remains is to calculate the normalization constant N:

N = 2(G(l)(a) + biHV-')(a) + b2g -l)(a))

= 1 - e- cos(a) + (b, + b2 )cosh(a)sin(a) + (b, - b2 )sinh(a)cos(a)

In summary, after deciding on the parameter a, i.e. the ratio of the window size and

the smoothing parameter a, it is straightforward to calculate the parameters bl, b2, N and

substitute in the filters G(')(x). The filters used in our experiments are finally:

G+(x) = -- [&X1(cos(a) + sin(a))/2 + b(cosh(X) cos(-) + b2 (sinh(x) sin(-))]

G(-')(x) = -[1-e-x/cos(-)+(bl+b2)cosh(x)sin(-)+(bl-b2)sinh(X)cos(-)] (11)

The smoothing filter G is symmetric and vanishes outside the window, while its integral

G (- l) is antisymmetric and is equal to ±1/2 on the upper/lower ends of the window.

Figs. 5,6 show the finite smoothing filters G+(x) for various as.

At higher orders, it may be easier to derive the finite filter by a polynomial expansion.
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5. Rounding the Filter's Edges

In this section we show that for differentiation, the discontinuities of the filter, e.g. at

the ends, can lead to significant errors even in the absence of noise, and show a way to

overcome it. This treatment does not depend on the filter so it is valid for any filter.

Truncating an infinite filter is often the cause of these discontinuities, but the finite filter

developed before is also not continuous enough for use with derivatives.

The derivative G' can be used as a differentiation filter only when the smoothing filter

G vanishes at the ends, because, by integration by parts.

G( )p'(x - )d = f G'()p(x - )d + G(w)(p(x + w) - p(x - w))

The last term is usually neglected when using a truncated Gaussian filter. Another way

of looking at it is by differentiating the smoothed data:

0 X+ G(x - f)p( )d = + G'(x - )p( )d + G(w)(p(x + w) - p(x - u-))
dx C -W=1] -

The last term comes from differentiating the integral's limits and is the same as in the

previous expression.

At higher derivatives, more of these term will appear, and our experiments show that

the effect of neglecting these terms becomes totally devastating from the second or third

derivative up (Table 2). The reason is that truncating the filter amounts to assuming that

the data is zero outside the window, and this introduces a sharp artificial discontinuity in

the data. The result is a meaninglessly high values for derivatives, especially the high order

ones. A small discretization interval aggravates the problem. This "truncation error" is

probably a major cause for the failure of the usual methods to obtain reliable derivatives.

Directly calculating these boundary terms is not straightforward. These terms all

contain values of the data and/or its derivatives at the ends, and these are not known

accurately. For the first derivative one can solve the problem by finding a filter that vanishes

at the ends like the one found in the last section, but it will not work at higher orders. In
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principle, one can first smooth the image and then perform successive different;ations. but

this is quite cumbersome and our experiments with this idea were not very encouraging.

Fortunately, we found a simple "quick fix" to avoid the extra terms above, and it was

very successful experimcnmdly in most cases. (In Section 6 we present a more rigorous.

but more complicated way to solve the problem.) The "trick" is to smooth the filter so

that it, as well as its derivatives, will go down to zero continuously around the ends rather

than terminate there discontinuously. In this way all the extra boundary terms above will

vanish. The smoothed filter approximates the discontinuous one pretty closely except that

its derivatives at the ends can now be handled properly.

This smoothing can be accomplished by a spline polynomial interpolation of the de-

sired order. This calculation does not need to be actually done, it is only a way to

understand our method. The only modification we actually do is replacing the derivatives

of the truncated filters (which are meaningless at the ends) by central differences. Our

experiments show that this is enough to practically eliminate the truncation error. It

also provides an easy way around other difficulties such as the discontinuity of our Green

function at the center.

We first construct a "piecewise" extended smoothing filter, G,(x) so that it is iden-

tically zero outside a window of width w. Its integral Ge- ' ) is thus extended beyond the

window as a constant. We can define it on discrete points with interval h as

G(ih)(- ') for -m < i < m
G -1 )(i) = 1/2 for i > m (12)

-1/2 for i < -M

with m = w/h being the farthest point from the window's center. This filter is equal to

±1/2 outside the window because of the normalization of G. The difference between these

"piecewise" extended filters and the original, either analytic or truncated functions. will

be crucial at the ends of the window.
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In common smoothing operations, one simply convolves a continuous smoothing filter

such as a Gaussian with the data p(i) using the discrete convolution

f(i) = S hG(kh)p(i - k) = hG 0 p
k- m

In effect, the data is regarded as sharp "spikes" at points i with zero everywhere else. We

will replace the spikes by square boxes with base h and height propoitional to the data

value. This will smooth the the data considerably, and it can be regarded as a 0-th order

spline interpolation. Now we have a continuous ("staircase") approximation of the data.

and one can use the piecewise extended filter G(x) to smooth over it. The result can be

c. prc'.. tcrras uf 'Llie extended filter G(7' as

f(E) = 3 (G-"(k + 1/2)_-G(')k 1/2))p(i - k)
k=-m

We can see that the filter G was replaced by a new smoothing filter, namely the first order

central difference of its integral GC- ). This can be expressed more concisely as

f e DG( - ' ) 0 p (13)

where D denotes the central difference

DG(i) = G(i + 1/2) - G(i - 1/2)

This difference can also be expressed as a convolution with the mask D:

D=(-1,1)

So, our new smoothing filter is now DGe- ) or D GD-

For taking derivatives, we need a higher order interpolation. As mentioned before, the

higher derivatives are much more sensitive to the discontinuities effects and need smoother

interpolation. Thus, for the n-th derivative, we will interpolate the data with an n-th

degree B-spline polynomial. These splines have n continuous derivatives, so the error
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resulting from the discontinuity problem is for practical purposes eliminated, as confirmed

experimentally.

To calculate the spline derivative, we use the well-known result (Ortega and Poole.

[1981]) that the n-th order derivative of an n-th order spline interpolation is essentially

nothing but the n-th order central difference of the data points. That is.

p~n(x) = D'p(i)/hn = 2)D p(i)/h n

where p;,.( r) is the n-th ord'r spline interpolation of p(i) and

D n =D®D3...

The first few masks D are easily obtained:

D2 = (1, -2,1)

D3 = (-1,3,-3, 1)

f) 4 = (1, -4, 6, -4, 1)

D)5 = (-1,5,-10, 10, -5, 1)

Without loss of generality one can set h = 1. The transition to h $ 1 can be made by

dividing by h', since
dn dn 1 dn

dx n  d(ih )n  hn di,

The n-th derivative of the n-th order spline approximation is constant in each interval.

yielding another staircase function. We can smooth it as before (eq. 13) by applying the

filter DG' - 1) . With the convolutions' associativity and commutativity we have:

fn -(D Z G'-l') 2 (D, 2 p) = )n+l n+ G ) Dn+'G 1 1 O-

Thus, finally, our n-th order differentiation filter is

F ( n) = Dn+G 1  (15)
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or explicitly, with h : 1,

m+n/2

Fn(k) = D)n+ ®G$-)/h = )n+ V-1)(i-k)/hn
k=-m-n/2

with n/2 being rounded to the next lower integer. We see that the usual derivatives of

filters have been replaced by central differences of the same order, which is equivalent to

a spline interpolation of the filter that smooths its discontinuities up to that order.

Ve emphasize that it is important to take the central difference of the "'piecewise

extended filter G$- ) (eq. 12) and not of the differentiable function Gt - ) from which it

has originated, particularly at the ends. This is what makes the spline approximation of

Ge go down to zero at the ends.

It can be easily shown that formally eq. (15) can be generalized to include combina-

tions of differences and derivatives

F( n ) = Dn-kGk)

But we have found the above case of k = -1 to be the most useful.

6. General Solution for Regularization

In previous sections we found the solution of the regularization problem at the center of a

window. To find the solution elsewhere we convolved the resulting filter with the image.

This has caused problems in the derivatives because it was hard to differentiate the filter

at the ends of the window. We used a spline interpolation to smooth this discontinuity.

In this section we find an analytic solution for the whole window without any reference

to the situation outside. This is a more rigorous solution to the truncation problem than

the spline interpolation, and sometimes more accurate, but it is more complicated. It can

be useful when the smooth part of the shape is small and there is not much room for a

convolution with a wide smoothing filter. or when a large discretization interval is involved

making the spline interpolation inaccurate. The boundaries are now the ends of the image.

not of a moving window.
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The standard methods of mathematical physics usually deal with second order dif-

ferential equations with only non-mixed boundary conditions (i.e. the conditions at one

boundary do not depend on the other). Here we we have a fourth order equation (at least)

with mixed boundary conditions, so these methods are not much guidance. We found a

general technique that solves the problem for any order and boundary conditions but we

do not claim originality).

We start from the general solution of eq. (3):

4
G(x G, G(x - ) + b,(c.)H,(.r) (20)

The G, is the solution in the infinite case and it provides the correct jump at x = C.

(1 + ()
4 )G (x - ') = 6(x - c)

while the boundary conditions determine the coefficients bi( ) of the homogencotis sl()Irions

H,. These conditions can be expressed by four linear combinations B(G). k = 1 4. of

all the derivatives G ") at the boundaries x = +u:

4

Bk(G) = -[3,,kG(")(w, ,) + 3,. - ) = 0
n=1

where 3 ,k, 3,,.k are any given constants. Substituting G from eq. (20) in the above

conditions we obtain a system of linear equations for b,( ):

b,(&)BI(HI) + ...+ b4(,)BI(H 4 ) = BI(GI)

(21)

bl(f)B4 (H1 ) + ... + b4 (&)B.4(H 4 ) = B 4(G.)

Since the homogeneous solutions H, do not depend on . we see that the coetficients

nmultiplying b,( ) on the left hand side are simply constants and the onIy (lepeldence on c
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comes from the Bk(G,) on the right hand side. Solving the above system for b,. we thus

obtain a linear combination of the right hand side terms, Bk(G,):

b() = z b1 kBk(Gx(±', ))

k

Thus, we have found a Green function which satisfies all conditions. it is easy to see that

this is a generalization of the standard Green function method and can be applied to any

order and boundary conditions.

Finally, our general solution can be written as

f(X) G(x. I)p ,)

Since the Green function satisfies the boundary conditions for every c, so does the linear

,-onibination f(x). For the discrete case, an integrate approximation such as Simpson s

rule can be used.

The derivatives at r can be expressed now as

fin) G(. { )p( {)d

Unlike the filter case, there are no extra terms either from integration by parts or noving

boundaries, so the approximation method used before to avoid them is not needed. At-

tention should be paid. however, to the situation at x = c, where the third derivative is

disconitinuious,

Our particular boundary conditions resulted from the preservation of the first four

moments ( eqs. 7). It is easy to show that these condition can be written linearly as

BI(G) = G'"1, = 0

B(G) = (G' -xG"".. = 0

B, G) = (G" - .rG'., = 0

BJ.(G) = 3G - 3.rG' + r 2 G' )I _ ,' ' = 0

where fi"-',,, denotes ft w ) - f(- ar). (These expressions are simpler when applied to H,

because of [anti]symnetry.) These are the conditions that we substitute in eq. (21t for

our particular case.
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7. Experiments

\We compared the performance of our filters with that of the Gaussian-based ones in various

respects. The new filter we used is given in eq. (15). with G (- ') given by eqs. (11,12).

1) Smoothing over a finite interval. Table 1 summarizes the results for various powers

x", at r 1. The window was wide enough to eliminate truncation errors. For low

smoothing. ay = 0.5. we can see that our filter gives the exact value of 1 up to x :r. is slightly

less accurate for x1 . and z is reduced about 20%. The Gaussian's errors are growino

rnpidlly. For Ihiher suxoothing. r = 2. the Gaussian results are totally wrong for powers

,r" and up, in perfect agreement with the theory. Our filter gives correct results up to x 3.

From Section 2. we have that the powers are preserved up to the order I of the filter The

Gaussian's order is 1 and ours here is 3. Section 3 generalizes our method to higher orders.

The small errors that we observe in our method at (7 = 2 have a very systematic

behavior. The error in x2 is independent of x and is about h2 /12, while that of x' was

seen, accordingly. to be O(h 2x). This is exactly the theoretical error for the "mid-point'"

rule of integration over x and is probably caused by using the analytic boundary conditions

of Section 3 rather than a discrete version. In such a version the analytic integrals involved

are replaced by sums.

2. Differentiation. Table 2 shows the errors in differentiatioi produced by triiucatino

the Gaussian at various situations. The derivatives of the Gaussian were used as differentia-

tion filters. We first tested at low smoothing (a = 0.2, h = 0.1), so that the oversmoothini

errors demonstrated above did not play a role. At a window width of 0.6 the Gaussian

(lecayed at the windows end to 0.01 of its peak value, yet the results at high derivatives

are totally nieaningless. Only when we extended the window such that the decay was 10 '

did the results come near the correct values. Our filter decays rather slowly and it would

be impractical to achieve this fi.ure. However. taking the central difference iistead of the

derivative of ouir filt,'r pro(luce very accurate results oii a simall window of width 0.3. (This

method should solve the truncation problem for the Gau ssian too. but than its other errors

will show up.)
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For stronger smoothing, a = 2, h = .5, with correspondingly increased window, the

Gaussian results were much lower than the actual derivative, because of oversmoothing at

the boundary. At a wider window, the errors described in (1) above reappeared and made

the results totally off the mark. With our method there is almost no truncation problem

and we see that the main characteristics are similar to the previous case: The method

gives good results as long as the power of x' is no more than three above the order of the

derivative, consistent with the preservation of the powers up to x. Some truncation error

shows up only at high derivatives of high powers, especially at dx X, but this result is still

only 20% off, by far the worst case here. We can see that this error is again proportional

to h2. For the smaller interval h, the same d x" was accurate to 1%. The cause for this

inaccuracy is probably the fact that the spline interpolation distorts the high power Xn

around the ends more than it does the lower ones. (A method such as described in Section

6 which does not depend on this interpolation should not have this problem.) For functions

like sin(x/so) we obtained much better results than the Gaussian with a so.

3. Random noise. To see the effect of random noise, we can perturb the data by a

given amount and observe the effect on the derivatives. We can look at a function such

as f = (x/2) 3 , for which the scale of change as defined in Sec. 2 is 2. We know then that

the smoothing parameter a should not be much greater than 2 to prevent oversmoothing.

Thus we look at a filter with a = 2, with a window width w = 5 and interval h = 0.3. If we

perturb the data at some pixel i by the amount of Af, than the error in the derivative at

the k-th pixel is F~n)(i - k)Af. So, the error is proportional to the magnitude of the filter

elements. Table 3 gives the filter elements with the above parameters for the 0 ..... 4-th

derivatives. We can see that the values are on average 0.05. giving an erior of about 57

in the derivative for an error of Af = 1 in the data. The higher derivative filters are no

worse the the others in this respect, showing that by choosing the right parameters high

derivatives are quite feasible.

The Gaussian derivat'ves are of the same magnitude, but their systematic errors make

them useless at this a as seen before. The polynomial based filters tend to have higher
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values at the center and very low ones towards the ends, making them sensitive to noise

at the center and reducing their ability to average out the noise.

8. Conclusions

In this paper we have found the sources of errors in common differentiation filters and

have shown ways of overcoming them. The errors we dealt with were (i) Over-smoothing

in Gaussian-based filters, leading to inaccurate results even for the simplest functions. We

have shown that higher filters can solve the problem. We have proposed a new method

of deriving higher order filters that achieves a better balance between smoothing and

accuracy than previous ones. (ii) Discontinuities such as truncation of an infinite filter

can have devastating effects on the derivatives. We have overcome this by replacing the

derivative of the smoothing filter by a central difference of the same order to form the

derivative filter. (iii) Random noise can be suppressed without sacrificing accuracy too

much, if the parameters of the filter are chosen properly; our "accuracy criterion" gives

the relation among the accuracy, the smoothing parameter, and the order of the filter.

Our experiments show that with these techniques one can obtain noise resistant high

order derivatives.
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Table 1: Smoothii.- on a Finite Interval

s= .5, wo 1, h =0.1

1

Gauss 1.00 1.00 1.25 1.75 2.68 4.44

Ours 1.00 1.00 1.00 1.00 0.96 0.S0

s=2, wv =5. h = 0.3

1 x x2 3 x4

Gauss 1.00 1.00 4.99 12.99 72.99

Ours 1.00 1.00 1.02 1.06 -23.27

Table 2: Truncation Error

s =.2. h = .1

WV (d0 1 (IOX4 (14 X4  d 4x5  d 4X6  d4 x7

Trunc. 0.6 1.03 1.241 -252 -361 -466 .530

Gauss 1.0 1.04 1.25 23.4 11S.9 :372.0 93.5

Ours .5 1.0 1.0 241.0 120.0 :361 S.50

correct 1 1 24 120 360 840

=2./h = .5

W (P1 2  (/01.1 (14 x- d 4 X5  d 4x 
6  J,1x

Trunc. 0.6 4.9 68.6 0.19 9.04 281 1821

Gauss 1.0 1.99 72.9 23.S 119.2 17S0.4 1079:3

Ours .5 1.02 -2:3.27 2-4.0 120.0 397.4 1101.6
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Table 3: The Differentiation Filters

s : 2, w = 5, h = .5

do  di d2  d3  d4

0.1-5938313 0.0 -0.07757177 0.0 0.1673013

0.14968666 -0.03.5.587692 -0.056639108 0.059712945 0.031345331

0.12582541 -0.056247147 -0.027910113 0.04972561.5 -0.030269221

0.094986638 -0.064475199 -0.0067284237 0.035947677 -0.023677088

0.062465755 -C 063716331 0.0085339938 0.026105913 -0.015705673

0.032078371 -0.056430985 0.019S69993 0.02017S.524 -0.00822C7441

0.0066584S57 -0.044101009 0.029149307 0.017725599 -0.0019682933

-0.011474073 -0.027339632 0.037936547 0.017982888 0.0024734119

-0.020122496 -0.0060825336 0.04734214 0.01990211 -0.052793667

-0.016935383 0.0201-50092 0.043.549316 -0.10480257 -0.3384-1196

-0.0028609419 0.02018207.5 -0.044853998 -0.0808.5623 0.4872,5418

- -0.011443767 0.0807283 -0.08786585-1

- - -0.04.577507
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Fjivitre 3: Foicr TranI1sform of Smoothiung Fil ters
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Fliure 5: Finite Smoothling Filters
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